Portfolio Choice with Liquidity Frictions

Master Thesis Defense

Daniel Dimitrov, Tilburg University

Why is it Important?

  • Illiquid assets included the portfolios of many investors
    • long-term institutional investment (pension funds, endowments, sovereign wealth funds etc.)
    • personal finance (a house, real estate, private company shares, art, jewelry, etc.)
  • How to incorporate their properties into the allocation decision?
  • How illiquidity affects consumption over the long term?

What is liquidity?

Liquidity is hard to define, but β€œyou know it when you see it.” (O’Hara (1995), Market Microstructure Theory)

  • Can be defined accross three dimension

    • Price: Transaction Costs
    • Quantity: Costless trading but at limited sizes
    • Time: Search frictions, Lag between placing and order and executing

Ang, Papanikolaou and Westerfield: Portfolio Choice with Illiquid Assets (2013), NBER Working Paper

  • Liquidity as the outcome of a random process: Search friction
    • A trade in the illiquid asset can occur only with uncertainty about the timing
    • The investor is able to consume only out of liquid wealth while allowed to transfer between the liquid and illiquid with uncertain timing
  • Wealth implications when liquidity is stochastic

Liquid Market

The Market

  • Risk-free Money Market Account dBt/Bt=rtdt\begin{equation} dB_t / B_t = r_t dt \end{equation}
  • Risky Assets

𝐝𝐒t𝐒t=𝛍dt+𝛔𝐝𝐙t=(r1+π›”π›Œ)dt+𝛔𝐝𝐙t\begin{aligned} \frac{\bm{dS}_t}{\bm{S}_t} & = \bm{\mu} dt + \bm{\sigma}\bm{dZ}_t \\ & = (r \mathbb{1} + \bm{\sigma}\bm{\lambda}) dt + \bm{\sigma}\bm{dZ}_t \end{aligned}

where π›Œ=π›”βˆ’1(π›βˆ’r1)\bm{\lambda} = \bm{\sigma} ^{-1}(\bm{\mu} - r \mathbb{1}) is Price of Risk

  • Wealth Dynamics
dWtWt=(r+𝛑tβ€²(π›βˆ’r1)βˆ’ct)dt+𝛑t′𝛔𝐝𝐙t=(r+𝛑tβ€²π›”π›Œβˆ’ct)dt+𝛑t′𝛔𝐝𝐙t\begin{equation}\label{eq:WealthWithConsumption} \begin{aligned} \frac{dW_t}{W_t} &= (r + \bm{\pi}_t '(\bm{\mu}-r \mathbb{1})- c_t)dt + \bm{\pi}_t'\bm{\sigma} \bm{dZ}_t \\ &= (r + \bm{\pi}_t '\bm{\sigma} \bm{\lambda}- c_t)dt + \bm{\pi}_t'\bm{\sigma} \bm{dZ}_t \end{aligned} \end{equation}
  • Value Function:
V(W,t)=sup(Ο€s,Cs)βˆˆπ”ΈtEt∫t∞eβˆ’Ξ²(sβˆ’t)u(Cs)ds\begin{equation}\label{eq:indirectUtility} V(W,t)= \sup_{(\pi_s,C_s)\in\mathbb{A}_t}E_{t}\int\limits_{t}^{\infty}{\mathrm{e}^{-\beta (s-t)}u(C_s)}ds \end{equation}
  • CRRA Utility: u(Ct)=Ct1βˆ’Ξ³1βˆ’Ξ³ u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma}

The Market is Complete ...

  • A complete market is one, in which any future uncertain pay-off is attainable.

    • A portfolio strategy can be constructed which will produce any uncertain pay-off in the future given initial budget.

    • The same number of assets as the number of risk sources (B.M.s)

dSitSit=(r+βˆ‘j=1nΟƒijΞ»jt)dt+βˆ‘j=1nΟƒijdZjt,i=1,...,n \frac{dS_{it}}{S_{it}} = (r + \sum_{j=1}^{n}\sigma_{ij}\lambda_{jt}) dt + \sum_{j=1}^{n}\sigma_{ij}dZ_{jt} ,\quad \quad i=1,...,n

... and arbitrage free...

  • An arbitrage opportunity is a self-financing trading strategy which starting with zero investment cost generates
    • non-negative payoff with probability 1 and
    • positive payoff with positive probability.
  • The Martingale Solution Method:
    • choose directly the optimally invested wealth in complete and arb. free market
    • prices are uniquely determined and any future payoff can be replicated by a specific trading strategy.

sup(cs)E[∫0∞eβˆ’Ξ²su(Cs)ds]s.t. E∫0∞MsCsds=W0M0 \begin{equation}\label{eq:ProblemOptStatic} \begin{aligned} & \sup_{(c_s)}{E\left[\int_{0}^{\infty}{\mathrm{e}^{-\beta s} u(C_s)}ds\right]} \\ & \text{s.t. }E \int_{0}^{\infty}{M_sC_sds} = W_0 M_0 \end{aligned} \end{equation}

  • Dynamic Programming Approach:
    • choose optimizing strategies for cc and 𝛑\bm{\pi}

sup(𝛑s,cs)E[∫0∞eβˆ’Ξ²su(Cs)ds]s.t. dWs=Ws(r+𝛑sβ€²π›”π›Œ)dsβˆ’Csds+Ws𝛑s′𝛔dZs \begin{equation}\label{eq:ProblemOptDynamic} \begin{aligned} &\sup_{(\bm{\pi}_s,c_s)}{E\left[\int_{0}^{\infty}{\mathrm{e}^{-\beta s} u(C_s)}ds\right]} \\ & \text{s.t. }dW_s = W_s (r + \bm{\pi}_s' \bm{\sigma \lambda} )ds - C_s ds + W_s \bm{\pi}_s'\bm{\sigma} dZ_s \end{aligned} \end{equation}

Optimal Solution

  • Consumption

ct*=Ξ²+r(Ξ³βˆ’1)Ξ³+12Ξ³βˆ’1Ξ³2βˆ₯π›Œβˆ₯2 \begin{align}\label{eq:optcMartingale} c_t^*= \frac{\beta+r(\gamma - 1)}{\gamma} + \frac{1}{2} \frac{\gamma-1}{\gamma^2}\lVert \bm{\lambda} \rVert ^2 \end{align}

  • Allocation
𝛑t*=1Ξ³(𝛔′)βˆ’1π›Œ=1Ξ³(𝛔𝛔′)βˆ’1(π›βˆ’r1)\begin{equation}\label{eq:optPiMartingale} \bm{\pi}_t^* = \frac{1}{\gamma}(\bm{\sigma}')^{-1}\bm{\lambda} = \frac{1}{\gamma}(\bm{\sigma\sigma}')^{-1}(\bm{\mu} - r \mathbb{1}) \end{equation}

Illiquid Market

The Market

  • Riskless asset dBt=rBtdtdB_t=rB_tdt

  • Liquid risky asset dS1t/S1t=ΞΌ+ΟƒdZ1tdS_{1t}/S_{1t} = \mu + \sigma dZ_{1t}

  • Risky illiquid asset dS2t/S2t=Ξ½+ψρdZ1t+ψ1βˆ’Ο2dZ2tdS_{2t}/S_{2t} = \nu + \psi \rho dZ_{1t} + \psi \sqrt{1-\rho^2} dZ_{2t}

  • The investor cannot be certain that a market for asset S2S_2 will exist over time.
  • The asset will be tradable with probability pp and will be illiquid with probability 1βˆ’p1-p.

Wealth

  • Consume out of liquid wealth only.
  • Illiquid wealth can be consumed only after converting it to liquid by transferring the amount dIdI if there is a trading possibility (determined by probability pp).

  • Wealth evolves according to

dwt/wt=(r+(ΞΌβˆ’r)ΞΈtβˆ’ct)dt+ΞΈtΟƒdZ1tβˆ’dIt/wtdxt/xt=Ξ½dt+ψρdZ1t+ψ1βˆ’Ο2dZ2t+dIt/xtWt=wt+xt\begin{align} dw_t/w_t & = (r+(\mu - r)\theta_t - c_t)dt + \theta_t\sigma dZ_{1t} - dI_t/w_t \label{eq:w} \\ dx_t/x_t & = \nu dt + \psi\rho dZ_{1t} + \psi \sqrt{1-\rho^2} dZ_{2t} + dI_t/x_t \label{eq:x} \\ W_t & = w_t + x_t \label{eq:W} \end{align}

Value

V(wt,xt)=supΞΈ,dI,cEt[∫t∞eβˆ’Ξ²(sβˆ’t)u(cs,ws)ds]\begin{equation} V(w_t,x_t) = \sup_{\theta, dI, c} E_t \left[\int\limits_{t}^{\infty} \mathrm{e}^{-\beta (s-t)} u(c_s,w_s)ds\right] \end{equation}
  • Becomes a function of Wealth and ΞΎ\xi only

V(kwt,kxt)=supΞΈ,dI,cEt[∫t∞eβˆ’Ξ²(sβˆ’t)(kcsws)1βˆ’Ξ³1βˆ’Ξ³ds]=k1βˆ’Ξ³V(wt,xt)V(kw_t,kx_t) = \sup_{\theta, dI, c} E_t \left[\int\limits_{t}^{\infty} {\mathrm{e}^{-\beta (s-t)} \frac{(kc_sw_s)}{1-\gamma}^{1-\gamma}}ds\right] = k^{1-\gamma}V(w_t,x_t)

V(wt,xt)=(Wt)1βˆ’Ξ³V(wtxt+wt,xtxt+wt)=Wt1βˆ’Ξ³V((1βˆ’ΞΎ),ΞΎ)V(w_t,x_t) =(W_t)^{1-\gamma}V\left(\frac{w_t}{x_t + w_t},\frac{x_t}{x_t + w_t}\right) = W_t^{1-\gamma}V\left((1-\xi),\xi\right)

H(ΞΎ)≑V((1βˆ’ΞΎ),ΞΎ)V(wt,xt)=Wt1βˆ’Ξ³H(ΞΎt)\begin{align} H(\xi) \equiv V((1-\xi),\xi) \\ V(w_t,x_t) = W_t^{1-\gamma} H(\xi_t) \end{align}

Optimal illiquid investment ΞΎ\xi

ΞΎ*=argmaxΞΎH(ΞΎ)\xi^* = arg\max_\xi H(\xi)

Optimal Consumption

  • The Euler Equation: uβ€²(cw)=Vwu'(cw) = V_w
copt=((1βˆ’Ξ³)H(ΞΎ)βˆ’Hβ€²(ΞΎ)ΞΎ)βˆ’1Ξ³(1βˆ’ΞΎ)βˆ’1\begin{equation}\label{eq:consumptionAng} c^{opt} = \Big((1-\gamma)H(\xi)-H'(\xi)\xi \Big) ^{-\frac{1}{\gamma}} (1-\xi)^{-1} \end{equation}

Optimal liquid investment ΞΈ\theta

  • From the HJB PDE equation by Ang et al. (2013)
ΞΈopt=βˆ’k1H(ΞΎ)+k3Hβ€²(ΞΎ)+k5Hβ€³(ΞΎ)k2H(ΞΎ)+k4Hβ€²(ΞΎ)+k6Hβ€³(ΞΎ)\begin{equation}\label{eq:thetaAng} \theta^{opt} = -\frac{k_1H(\xi)+k_3H'(\xi)+k_5H''(\xi)}{k_2H(\xi)+k_4H'(\xi)+k_6H''(\xi)} \end{equation}

The Bellman Equation Discretized & Decomposed

V(Wt,ΞΎt)=max(ΞΈt,dIt,ctβˆˆβ„›){u(ct(1βˆ’ΞΎt)W)Ξ”t+eβˆ’Ξ²Ξ”tEW,ΞΎ[V(Wt+Ξ”t,ΞΎt+Ξ”t)]}Wt(1βˆ’Ξ³)H(ΞΎt)=max(ΞΈt,dIt,ctβˆˆβ„›){Wt(1βˆ’Ξ³)u(ct(1βˆ’ΞΎt))Ξ”t+eβˆ’Ξ²Ξ”tEW,ΞΎ[Wt+Ξ”t(1βˆ’Ξ³)H(ΞΎt+Ξ”t)]}\begin{aligned} V(W_t,\xi_t) = & \max_{(\theta_t,dI_t,c_t \in \mathcal{R})}\{u(c_t (1-\xi_t) W)\Delta t \\ & + \mathrm{e}^{-\beta \Delta t} E_{W,\xi}[ V(W_{t+\Delta t}, \xi_{t+\Delta t})]\} \\ W_t^{(1-\gamma)} H(\xi_t) = & \max_{(\theta_t,dI_t,c_t \in \mathcal{R})}\{W_t^{(1-\gamma)} u(c_t (1-\xi_t) )\Delta t \\ & + \mathrm{e}^{-\beta \Delta t} E_{W,\xi}[ W_{t+\Delta t}^{(1-\gamma)} H(\xi_{t+\Delta t})]\} \end{aligned}

Wt(1βˆ’Ξ³)H(ΞΎt)=max(ΞΈt,dIt,ctβˆˆβ„›){Wt(1βˆ’Ξ³)u(ct(1βˆ’ΞΎt))Ξ”t+eβˆ’Ξ²Ξ”t(pEW[Wt+Ξ”t(1βˆ’Ξ³)]H*+(1βˆ’p)EW[Wt+Ξ”t(1βˆ’Ξ³)H(ΞΎt+Ξ”t)])}\begin{aligned} W_t^{(1-\gamma)} H(\xi_t) = & \max_{(\theta_t,dI_t,c_t \in \mathcal{R})}\{W_t^{(1-\gamma)} u(c_t (1-\xi_t) )\Delta t \\ + & \mathrm{e}^{-\beta \Delta t} (p E_{W}[ W_{t+\Delta t}^{(1-\gamma)}] H^* +(1-p) E_{W}[ W_{t+\Delta t}^{(1-\gamma)} H(\xi_{t+\Delta t})])\} \end{aligned}

H(ΞΎt)=max(ΞΈt,dIt,ctβˆˆβ„›){u(ct(1βˆ’ΞΎt))Ξ”t+eβˆ’Ξ²Ξ”t(pH*E(Rt+Ξ”t(1βˆ’Ξ³))+(1βˆ’p)E[Rt+Ξ”t(1βˆ’Ξ³)H(ΞΎt+Ξ”t)])}\begin{aligned} H(\xi_t) = & \max_{(\theta_t,dI_t,c_t \in \mathcal{R})}\{u(c_t (1-\xi_t) )\Delta t \\ & + \mathrm{e}^{-\beta \Delta t} (p H^* E( R_{t+\Delta t}^{(1-\gamma)}) +(1-p) E[R_{t+\Delta t}^{(1-\gamma)} H(\xi_{t+\Delta t})] )\} \end{aligned}

  • State Transition Dynamics
  • Trading probability pp can be calibrated through a the Poisson distribution
p=1βˆ’eβˆ’Ξ·Ξ”t\begin{equation} p = 1- \mathrm{e}^{-\eta \Delta t} \end{equation}

Smooth Approximation Algorithm

V(W,t)=maxcβˆˆπ’Ÿ(W,t)u(cW)+Ξ΄E[V(W+|W,c)]≑(𝒯V(W+))\begin{equation} V(W,t)= \max_{c\in\mathcal{D}(W,t)}u(cW)+\delta E[V(W^+|W,c)]\equiv(\mathcal{T}V(W^+)) \end{equation}

Initialization: Choose functional form V^(W;a)\hat{V}(W;a) and chose approximation grid for the wealth variable Ο‰=Ο‰1,...,Ο‰n\omega={\omega_1,...,\omega_n}. Make initial guess V^(W;a0)\hat{V}(W;a^0) and choose stopping criterion Ο΅\epsilon.

  • Step 1: : Compute vj=(𝒯V^(W,ai)(Ο‰j))v_j=(\mathcal{T}\hat{V}(W,a^i)(\omega_j)) for each Ο‰jβˆˆΟ‰\omega_j \in \omega, j=1,...,nj = 1,...,n
  • Step 2: : Compute ai+1∈Rna^{i+1} \in R^n such that V^(W;ai+1)\hat{V}(W;a^{i+1}) approximates (vj,Ο‰j)(v_j,\omega_j) . One possible approach to the fitting step is to use least squares:

    minaβˆˆβ„›nβˆ‘j=1n(V^(Ο‰j;a)βˆ’vj)2\min_{a\in\mathcal{R}^n} \sum\limits_{j=1}^{n}(\hat{V}(\omega_j;a)-v_j)^2

  • Step 3: If βˆ₯Vi+1βˆ’Viβˆ₯<Ο΅\|V^{i+1}-V^i\|< \epsilon stop, otherwise go to Step 1.

Smooth Approximation applied on the Decomposed Illiquid Bellman:

  • Our goal is to find the parameters a1,...,a8a_1, ..., a_8

H^(ξ;𝐚)=a0+a1ξ+a2ξ2+....+a8ξ8\hat{H}(\xi;\bm{a})= a_0+a_1\xi+a_2\xi^2+....+a_8\xi^8

  • Value Function Iteration

H(ΞΎt)=max(ΞΈt,dIt,ctβˆˆβ„›){u(ct(1βˆ’ΞΎt))Ξ”t+eβˆ’Ξ²Ξ”t(pH*E[Rt+Ξ”t(1βˆ’Ξ³)]+(1βˆ’p)E[Rt+Ξ”t(1βˆ’Ξ³)H(ΞΎt+Ξ”t)]}≑(𝒯H(ΞΎt+Ξ”t))=hj\begin{aligned} H(\xi_t) = & \max_{(\theta_t,dI_t,c_t \in \mathcal{R})}\{ u(c_t (1-\xi_t) )\Delta t \\ & + \mathrm{e}^{-\beta \Delta t} (p H^* E[ R_{t+\Delta t}^{(1-\gamma)}] +(1-p)E[ R_{t+\Delta t}^{(1-\gamma)} H(\xi_{t+\Delta t})]\} \\ & \equiv(\mathcal{T}H(\xi_{t+ \Delta t})) = h_j \end{aligned}

Key Findings

  • Clear adverse effect from illiquidity on the optimal illiquid asset holdings

State Dependency

  • At high illiquid asset endowment levels the investor will tend to reduce
    • the allocation the liquid asset
    • consumption
  • Consumption is reduced proportionately to the level of the friction
    • lower diversification
    • higher risk that liquid wealth could be exhausted before a trading opportunity arrives

1 Year Average Waiting Time

10 Year Average Waiting Time

  • An infinitely lived agent is able to rebalance often enough to avoid being stuck with too much illiquid wealth

  • Still creates enough situations where liquid risky holdings need to be cut down

  • Fluctuations in illiquid wealth increase risk aversion

  • Positive dependency between the degree of the liquidity friction, the utility cost and the liquidity premium.

Sensitivity to the Trading Interval

  • Diversification benefits from low correlation between the liquid and illiquid assets are muted relative to the model with no frictions

  • Utility cost is much stronger for assets with high negative correlation

Asset Class Data

  • JP Morgan Capital Market Assumptions 2016: 10 Year Forecast

  • Liquidity based on Ang et al (2013)

consumption

allocation

Questions